Текст:  Людмила Александровна Константинова,
учитель математики МКОУ Шелеховского района
«Большелугская СОШ № 8» 
Проведенный анализ учебников математики показал, что учебные комплекты по математике не содержат специальных тренировочных упражнений  по развитию памяти, не знакомят учащихся с приёмами лучшего запоминания математических правил.
В своей практике применяю различные приемы и методы технологии развития критического мышления. Использую принцип-действие: «Посмотреть, проговорить, услышать, записать». В этом случае включается в работу зрительная, слуховая, двигательная память, в результате информация запоминается надолго.
- Мотивационно-целевой этап урока:
■ «Пропуск на урок». Входящему в кабинет предлагаю рассказать правило, определение, алгоритм, таблицу умножения и т. д.
■ Игра «Кот в мешке». Из числа желающих выбираем ведущего, который заранее составляет 5–10 вопросов по заданной теме и задает их своим одноклассникам. - Процессуальный этап урока:
■ Метод «Учитель-ученик». Смысл метода состоит в том, что класс делится на сменные пары «учитель-ученик», «учитель» задает вопросы, которые готовит заранее. Уникальность в том, что дети знают заранее, кто из них будет учителем, а кто – учеником, но не знают, с кем из ребят они будут работать.
■ «Мозговой штурм». При изучении нового материала учащимся предлагаются задания, в результате которых они сами выходят на новые знания.
■ «Запоминай и делай». При организации динамической паузы предлагаю ребятам сначала прослушать, запомнить, а потом повторить упражнения последовательно. -  Рефлексивно-оценочный этап урока:
■ «От начала до конца». Предлагаю вспомнить и подробно описать весь ход урока, таким образом в сознании ребенка формируется целостная картина его деятельности на уроке, а также происходит тренировка памяти.
■ «Лучший разведчик». В конце урока «разведчики» должны ответить на вопросы, направленные на развитие внимания, наблюдательности.
■ Дома предлагается потренировать свою память с помощью упражнений: «Закрытые глаза», «Смена рабочей руки», «Часы», «Обратный отсчет», «В магазин без списка». 
Каким приёмам запоминания можно обучить подростка на уроках математики?
- Традиционному приему «Вопрос-ответ»: к данному тексту составить вопросы и задать их себе, а потом и одноклассникам.
 - Прием «Ключевые слова» помогает составить плана текста, в качестве ключевых слов можно использовать необычные метафоры, имена…
 - Прием перекодирования информации «Запоминаем рисуя». В основном цвет используется для выделения главных, ключевых слов в определениях, правилах, задачах.
 - Прием «Схема» – перекодирование информации в виде «Кластера», «Таблицы».
 - «Справочник по математике» является своеобразной «копилкой», оказывает огромную помощь при подготовке к ГИА.
 - Записывать примеры из текста и составлять собственные по аналогии, а также правила в  виде формулы.
■ Масштаб.
■ Правило пропорции «крест-накрест».
■ Правило фонтанчика – распределительное свойство умножения. 
■ Самым простым и эффективным способом запоминания материала является прием ассоциаций. Чтобы запомнить что-то новое, необходимо связать это с каким-либо уже известным фактором, применяя своё воображение либо эмоцию. Данный прием является основой мнемоники.
 ■ «Генеалогическое древо» четырехугольников. Дети запоминают сразу все «родственные» связи фигур и существенные признаки.  Жил-был четырёхугольник и были у него красавица-дочка ТРАПЕЦИЯ и сыночек ПАРАЛЛЕЛОГРАММ. У ТРАПЕЦИИ было всего две дочки –  РАВНОБОКАЯ и ПРЯМОУГОЛЬНАЯ, а у ПАРАЛЛЕЛОГРАММА – два сыночка, ПРЯМОУГОЛЬНИК и  РОМБик, да еще внук, очень похожий на своего  отца ПРЯМОУГОЛЬНИКА и дядю РОМБА – КВАДРАТ. 
 
■ Число π – «Это, я, знаю и, помню, прекрасно…» количество букв в слове обозначает цифру. 
■ Округление десятичных дробей изучается в 5 классе, ребятам говорю, что они повзрослели, закончили начальную школу, стали старшими (сильными), так и числа бывают – 1, 2, 3, 4 – слабые (младшие), а вот цифры 5, 6, 7, 8, 9 – сильные. При округлении подчеркиваем цифру разряда, до которого надо округлить, и смотрим на «соседа-цифру» справа, если «сосед» слабый, то его отбрасывают (или заменяют на 0), а если «сосед» – сильное число, то оно отдает свою «силу +1», и его отбрасывают (или заменяют на 0).
 ■ Запоминаются с трудом значения синуса,  косинуса углов 30°, 45°, 60°. Рассказываю такую  историю: 3 дамы – 1, 2, 3 – отправились погулять,  пошел дождик, они открыли зонтики (квадратный  корень), но ножки (их по 2 у каждой) промочили  и вернулись домой. Пока рассказываю, заполняю  таблицу, которую ребята с легкостью запоминают.
 ■ Чтобы запомнить название осей координат,  наблюдаем за движением своих губ: при произношении слова АБЦИССА губы вытягиваются в  направлении «↔», что указывает на горизонтальную ось, а при слове ОРДИНАТА «↕» – вертикальная ось.  
 ■ При построении точки на координатной  плоскости представляем, что идем по улице и  сначала заходим в дом, а потом поднимаемся или  спускаемся по лестнице (х; у).
 ■ При изучении квадратичной функции: обращаю внимание на направление ветвей – руки  вверх или вниз.
 ■ «Надо ли менять название функции на кофункцию?», или «Правило ослика Иа». Если угол  а прилежит к вертикальному диаметру (90° a), 270° a), будем кивать головой вдоль вертикальной оси и отвечать «да», а если угол а прилежит  к горизонтальному диаметру (180° a),(360° a), то  поворачивать голову слева направо и отвечать  «нет». 
  ■  При изучении модуля учащиеся сами придумали ассоциацию – это «банька» для чисел.
 Результативность. У любого учителя есть любимые, результативные «приемчики», и от умения  их рационально выбрать, удачно комбинировать,  вмещать в рамки урока зависит эффективность запоминания информации, а в целом и всего  процесса обучения. Уважаемому читателю представлены далеко не все приемы и методы развития памяти, но основные из них можно применять на разных предметных дисциплинах, их  эффективность заключается в межпредметных  связях, через которые ребенок воспринимает  мир как единое целое. 
Список литературы
1. Подлиняев О. Л. Эффективная память: учебное  пособие. Иркутск: Изд-во Иркутского гос. ун-та, 2011.  199 с. 
2. Мерзляк А. Г. Математика: 5, 6 класс: учебник. М.:  Вентана-Граф, 2019.
3. Макарычев Ю. Н. и др. Алгебра. 7, 8, 9 класс: учебник для общеобразовательных учреждений. М.: Просвещение, 2013.
4. Атанасян Л. С. и др. Геометрия 7-9, 10-11 класс:  учебник для общеобразовательных учреждений. М.:  Просвещение, 2017.
5. Алимов Ш. А. Математика: алгебра и начала математического анализа 10-11 класс: учебник для общеобразовательных учреждений. М.: Просвещение, 2017. 






